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Computerized reservation systems were developed in the 1950s to keep track of airline seat booking and 
fare information.  Initially these were internal systems, but were soon made available to travel agents.  
Deregulation of airline pricing in 1978 permitted much more extensive use of the systems for economic 
activity, especially pricing.  The initial development of dynamically adjusted pricing is often credited to 
American Airlines’ Robert Crandall, as a response to the rise of discount airline People’s Express in the 
early 1980s.  The complexity and opaqueness of airline pricing has grown over time.  As a result, the 
“yield management” systems employed by airlines for pricing have become one of the most arcane and 
complex information systems on the planet, and one with a very large economic component.  Airline 
pricing represents a great challenge for modern economic analysis because it is so distant from the “law 
of one price” level of analysis.  This paper surveys the theoretical literature, which is mostly found in 
operations research journals, develops some new theory, assesses the holes in our knowledge, and 
describes some results from a new database of airline prices. 
 
Dynamic pricing, which is also known as yield management or revenue management, is a set of pricing 
strategies aimed at increasing profits.  The techniques are most useful when two product characteristics 
co-exist.  First, the product expires at a point in time, like hotel rooms, airline flights, generated 
electricity, or time-dated (“sell before”) products.  Second, capacity is fixed well in advance and can be 
augmented only at a relatively high marginal cost.  These characteristics create the potential for very large 
swings in the opportunity cost of sale, because the opportunity cost of sale is a potential foregone 
subsequent sale.  The value of a unit in a shortage situation is the highest value of an unserved customer.  
Forecasting this value given current sales and available capacity represents dynamic pricing. 
  
Yield management techniques are reportedly quite valuable.  One estimate suggests that American 
Airlines made an extra $500 million per year based on its yield management techniques (Davis 1994). 
This number may be inflated for several reasons.  First, it includes sales of yield management strategy to 
others, as opposed to American’s own use of the techniques, although the value of American’s internal 
use is put at just slightly less.  Second, it incorporates “damaged good” considerations in the form of 
Saturday-night stayover restrictions, as well dynamic pricing.  Such restrictions facilitate static price 
discrimination, and are reasonably well-understood in other contexts (Deneckere and McAfee 1996).  
Nevertheless, there is little doubt that dynamic price discrimination is economically important.  The 
pricing systems used by most major airlines are remarkably opaque to the consumer, which is not 
surprising given one estimate that American Airlines changes half a million prices per day.  The implied 
frequency of price changes seems especially large given that American carries around 50,000 passengers 
per day. 
 
There is surprisingly little research in economics journals concerning yield management, given its 
prominence in pricing in significant industries and the economic importance attached to it.  This paper 
contributes to our understanding of yield management in five ways.  First, it provides an extensive survey 
of yield management research in operations research journals.  Second, we explore an existing model of 
Gallego and van Ryzin (1994) that has a number of desirable properties, including closed form solutions 
and sharp predictions, to address dynamic pricing considerations.  Third, most of the literature assumes 
demand takes a convenient but unlikely form.  We consider the implications of constant elasticity of 
demand and demonstrate some new inequalities concerning this more standard case.  We examine this 
case in the context of an efficient allocation, rather than the profit-maximizing allocation, and show that 
many of the conclusions attributed to profit-maximization are actually consequences of the dynamic 
efficiency.  Fourth, we take a new look at dynamic pricing from the perspective of selling options.  A 
problem airlines face is that late arrivals may have significantly higher value than early arrivals, 
suggesting the airline ought to sell two kinds of tickets: a guaranteed use ticket and a ticket that can be 
delayed at the airline’s request.  Fifth, we’ve collected airline pricing data and generated stylized facts 
about the determinants of pricing, facilitating the evaluation of models. 
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1. Airline Pricing 

Airline pricing in the United States is opaque.  It is not uncommon for one-way fares to exceed round-trip 
prices.  The difference in price between refundable and non-refundable tickets is often a factor of four or 
five.  Prices change frequently, with low fares on a particular flight being available, then not, and then 
available again.  Average prices for round-trips between Phoenix and Los Angeles differ depending on 
whether they originate in Los Angeles or in Phoenix.  This is particularly mysterious in that the same 
airlines fly these round-trips with the same set of offerings. 
 
We collected data on fares for 1,260 flights from American Airlines, Orbitz and Travelocity.  Initially we 
collected data on each flight eight times daily, but when American Airlines objected to the volume of 
searches, we stopped using American’s site and scaled back the other two sites to once per day per flight.  
As we completed some of the searches, we scaled the frequency up.  Nevertheless, this represents a more 
intensive look at dynamic pricing than is available from any other source to our knowledge.  We will take 
up our findings after presenting the theory to put the findings in perspective.  
 
We will use the following terminology.  We will use price dispersion to refer to static randomization by 
firms in pricing, in which each customer pays an identical price, but that price is determined by a random 
process.  We will use dynamic price discrimination to refer to charging different customers distinct 
markups over marginal cost based on the time of purchase; when such pricing is efficient (maximizes the 
expected present value of the gains of trade), we’ll call it dynamic pricing rather than dynamic price 
discrimination.  Restrictions like Saturday-night stayovers, that create less valuable products, involve 
static price discrimination. 

2. Existing Literature 

Readers seeking a general discussion of yield management are referred to Williams (1999), Brooks and 
Button (1994), and Kimes (1989).1  Kimes (1989) discusses situations appropriate for yield management 
solutions, particular issues involved such as demand forecasting and overbooking, solution techniques, 
and managerial implications of yield management systems.  Brooks and Button (1994) discuss  the rise of 
yield management during and after deregulation of the 1970’s and 1980’s, using the shipping industry as 
a detailed example, and Williams (1999) discusses yield management in terms of the interactions between 
the firm, resources, products, customers, and competitors.  Talluri and van Ryzin (2004) have created a 
thorough textbook for the student of yield management. 
 
Yield management applications in the made-to-order (MTO) manufacturing industry include Harris and 
Pinder (1995), Sridharan (1998), and Barut and Sridharan (2004). Both MTO firms and service providers 
such as airlines face the problem of effectively utilizing a fixed capacity under uncertain or high demand 
in order to maximize revenue, and thus many yield management results are applicable to the MTO 
manufacturing industry. However, MTO manufacturing is different on the key points of finite time 
horizon and unchanging capacity. The horizon is infinite, since the factory never stops all operations at a 
specific time or sets a common deadline for all activity, and the capacity is not fixed, in that as orders are 
completed, capacity is replenished.  Thus, the MTO problem is more of a “stock out” problem than a 
yield management problem.  Harris and Pinder (1995) discuss the applicability of traditional yield 
management to MTO manufacturing and its managerial implications and develop a relevant theoretical 
framework using price classes based on unit-capacity rates.  Sridharan (1998) describes the use of yield 
management in manufacturing situations with higher demand than capacity, discussing three methods of 
                                            
1 A thorough literature review is contained in McGill and Van Ryzin (1999), along with a complete glossary of 
terms applicable to yield management, particularly in the airline industry. This literature review is largely distinct 
from theirs and may be considered in tandem. 
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increasing efficiency and revenue: capacity rationing based on price classes, increased coordination 
between marketing and manufacturing, and subcontracting. Barut and Sridharan (2004) further explore 
capacity rationing by developing a dynamic capacity apportionment procedure based on discriminating in 
favor of projects with a higher expected profit margin.  
 
Rather than a continuous stream of one-time manufacturing requests, Carr and Lovejoy (2000) consider a 
non-competitive firm that agrees to commitments of a normally distributed random annual demand. This 
“inverse newsvendor problem” matches a known capacity with a desired aggregate demand distribution. 
They also consider the effect of multiple price classes. Fen and Wang (1998) study a similar annual 
capacity management problem: developing an optimal harvesting policy of a renewable resource. The 
resource population is modeled as a time-dependent logistic equation with periodic coefficients, and the 
maximum annual-sustainable yield is determined along with the corresponding harvesting policy. 
 
The most common setting for yield management research is motivated by the airline and hotel industries. 
The remainder of the literature review focuses on these applications, and the rest of the paper deals with 
the airline industry exclusively. 
 
Botimer (1996) and Belobaba and Wilson (1997) investigate effects of yield management external to the 
firm using it. Botimer (1996) presents arguments for efficiency of yield management pricing in the airline 
industry, and Belobaba and Wilson (1997) investigate the impacts of yield management introduction in 
competitive airline markets. 
 
Most yield management research, however, deals with how to actually maximize revenue. One approach 
is to assume that customers arrive to request a flight, state the price they will pay, and then the firm 
decides whether or not to serve them. Van Slyke and Young (2000) study this situation in terms of filling 
a knapsack of fixed capacity with objects of known weights (or vector weights, to fill multi-dimensional 
knapsacks) and value, each type which arrives as a time-dependent Poisson process. With the goal of 
maximizing value, each object is accepted or rejected at the time of arrival. The case of equal weights is 
applied to airline seat inventory control, since each customer uses one seat, and the multi-dimensional 
knapsack is applied to the problem of allocating seats in a multiple origin and destination flight network. 
Sawaki (2003) addresses a similar question: Customers arrive throughout the continuous time horizon and 
state their price and demand size, and the firm decides whether to accept the request. A semi-Markov 
decision process is used, and an optimal policy and its analytical properties are found when demand 
arrives as a semi-Markov process. 
 
A more realistic way to treat customer price preferences with respect to the airline industry, however, is to 
assume that the customer’s willingness to pay is unknown when they request a ticket. Gallego and van 
Ryzin (1994) use intensity control theory (controlling the demand intensity with price changes) to study 
dynamic pricing under imperfect competition (i.e, demand is price-sensitive) and stochastic demand 
modeled as a Poisson process.  A closed-form solution is found for exponential demand functions and an 
upper-bound on revenue under general demand functions is found using a deterministic heuristic.  Also, 
monotonicity of the optimal price policy is shown, as well as asymptotic optimality of a fixed-price 
heuristic with market size. These results are then extended to allow compound Poisson demand, discrete 
prices, time-dependent demand, overbooking, resupply and cancellations, holding costs and discounting, 
and variable initial capacity. 
 
Feng and Xiao (2000a) consider the problem from the perspective of switching between a predetermined 
finite set of prices at calculated time thresholds depending on remaining time and stock. Demand is a 
Poisson process at each price level, and they find the optimal continuous time switching policy of an 
arbitrary number of either price mark-ups or mark-downs. Feng and Xiao (2000b) extend this to allow 
reversible price changes. They show that any subset of prices in the optimal solution is part of the 
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maximum concave envelope contained in the full set of allowed prices.  Feng and Gallego (2000) also 
address the discrete price time-threshold problem, but allow demand to be Markovian, i.e. fares and 
demand are not only dependent on remaining time but also on prior sales. Chatwin (2000) additionally 
allows demand (Poisson) to be time sensitive and provides the option of re-stocking at a unit cost. Zhao 
and Zheng (2000) find structural properties of the optimal price-switching policy (from a compact, but 
not necessarily finite, price set) when demand is a nonhomogenous Poisson process and investigate 
solution methods in the case of discrete prices. Badinelli (2000) considers product-differentiated market 
segments, each of which is allowed one advertised price at a time, and formulates an efficiently computed 
dynamic programming solution allowing general demand functions. In his model, customers request a 
hotel room or flight with a particular set of attributes and they are given a price quote based on remaining 
time and availability of all relevant commodities.  
 
Rather than dynamically changing prices to maximize revenue, some authors ration capacity with price 
classes to ensure that high-paying customers are served, effectively implementing a mark-up policy based 
on remaining capacity and, if seat allocation between classes is dynamically controlled, remaining time. 
Ladany (1996), assuming deterministic non-linear demand and a fixed cost for creating each price class, 
develops a dynamic-programming solution for finding the optimal number of price classes, the optimal 
number of capacity units (specifically, hotel rooms) allocated to each price class, and the optimal price at 
each class. Bodily and Weatherford (1995) allow uncertain demand, and study when to curtail low-price 
sales based on the probability of spoilage and expected marginal revenue. They don’t allow re-opening of 
price classes, but do not assume that all low-fare customers will arrive before high-fare customers 
(thereby forcing all high-fare customers to pay their full acceptable price). Li (2001) again considers 
deterministic demand, and studies the use of sales restrictions (such as advance purchasing, or minimum 
trip duration) for segmenting demand. He develops several key properties of the optimal restriction 
policies, and applies his results to airline pricing, where leisure travelers’ relative price elasticity 
compared to business travelers permits the efficient use of restrictions.  
 
Dana (1999a,b) studies aspects of market segmentation other than methods of optimal allocation. Dana 
(1999a) studies the phenomenon of equilibrium price dispersion, showing that the optimal pricing system 
under uncertain demand is price dispersed in monopolistic, imperfectly and perfectly competitive 
markets. He shows that the amount of price dispersion increases with the level of competition, using this 
to explain the observation that routes served by more airlines exhibit more price dispersion. Dana (1999b) 
demonstrates how setting multiple price levels on flights at different times can shift demand from the 
higher-demand departure time to the alternate flight, even when it is unknown which time is the peak. He 
addresses the competitive and monopoly cases and uses his model to show that high-fare customers may 
benefit from price dispersion as well as low-fare customers. 
 
Moving beyond single flight-leg analysis, several authors consider origin-destination networks. Feng and 
Xiao (2001) consider a network of multiple origins, one hub, and one destination. Prices for each flight 
leg are distinct, and demand at each origin is a Poisson process. They use a nested fare structure for 
inventory control and find the optimal time thresholds for closing origin-hub flights. They then extend 
their results to allow multiple fares on each origin-destination flight and time-dependent demand. 
Kuyumcu and Garcia-Diaz (2000) and Garcia-Diaz and Kuyumcu (1997) use a graph-theory approach for 
allocating seats in a flight network. Garcia-Diaz and Kuyumcu (1997) assumes a non-nested seat 
allocation system, normally distributed random demand that is independent between price levels, and a 
fixed number of fare classes. They develop an algorithm utilizing cutting-planes for allocating seats 
throughout the origin-destination network and investigate computational times. Kuyumcu and Garcia-
Diaz (2000) use the same assumptions except that demand on each day of the week may be different, and 
airline capacities are considered. They develop three models for the network pricing and seat allocation 
problem, the third being a polyhedral graph theory approach, and a solution procedure that they test 
computationally. The doctoral thesis of Williamson (1992) compares the use of several network-level seat 
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inventory control heuristics in simulation. She concludes that considering network-wide effects may 
increase revenue by 2-4%, but only when the load factor is very high. de Boer, Freling and Piersma 
(2002) extend her research by disputing the finding that deterministic approximation methods outperform 
probabilistic heuristics which they claim is due to a difference in fare class structure in modeling and 
simulation. 
 
In these studies of dynamic price discrimination, there is a tension between the practical and the 
insightful.  Computation-based analyses in principle could be used to solve real-world problems of 
optimal pricing, while simpler theories elucidate potential principles for understanding pricing generally. 
 
A common assumption in the literature posits a discrete price grid, or even just two prices, which 
simplifies the problem to one of deciding when to switch to another price (Feng and Xiao (2000a, 2000b), 
Feng and Gallego (2000), Sawaki (2003)).  The assumption of a discrete price grid doesn’t seem justified, 
either on theoretical grounds, since there is no economy of using few prices, or on practical grounds, 
since airlines and hotels in fact employ a large set of prices.  Thus, the defense of the assumption relies on 
the simplification of the mathematical problem.  The main advantage of the assumption is that proving 
existence of an optimal solution is trivial, but little else is gained.  An exception is Chatwin (1999), which 
exploits the finite grid to develop a nice intuition for when prices rise and fall. 
 
The use of a specific functional form for demand is common.  The most common assumption is 
exponential demand, q(p) = ae-bp, for constants a, and b.  This form of demand is useful to assume because 

q
q′  is a constant, and thus marginal revenue is price minus a constant.  As a result, a monopolist would 

choose to charge a price which is marginal cost plus a constant.  This feature of exponential demand 
makes the solution to the monopoly problem reduce to the problem of calculating marginal cost, a simpler 
though nontrivial problem.  Gallego and van Ryzin (1994) is the best paper of the set of exponential 
demand papers, and we discuss it extensively below and indeed ask some additional questions of this 
theory. 
 
A variety of mechanisms for bringing customers to the seller are considered in the literature.  The most 
common assumption is a constant Poisson process but possibly with time-varying arrival rates (Zhao and 
Zheng 2000).  An interesting variant on the arrival rate process is a markov switching model, which 
involves a signal extraction problem: detecting from the behavior of buyers whether demand conditions 
have changed (Feng and Gallego 2002). The connection between the classic peak-load pricing problem 
and dynamic pricing is explored in Dana (1999b).  This paper concludes that prices should be increasing 
on average, because of a correlation between high demand and high prices.  As in Dana’s analysis, several 
authors posit multiple classes of customers, who may arrive via distinct processes. 
 
While the most common objective function is to maximize expected revenue, Carr and Lovejoy (2000) 
consider the alternate assumption of pricing to sell out.  Pricing to sell out is a bad strategy for several 
reasons.  First, a profit maximizing firm would not price to sell out.  However, more alarmingly, even the 
efficient solution that maximizes the gains from trade doesn’t price to sell out. 
 
Most of the literature focuses on the problem of a single flight, treating competition and alternate flights 
as fixed, but several authors have made headway into the problem of multiple flights and routes.  Feng 
and Xiao (2001) examine a simple Y-shaped pattern through a hub.  Network issues are also examined in 
de Boer, Freling and Piersma (2002). 
 
Dana (1999a) is the only author to develop a full theory of competition between dynamically pricing 
sellers.  The theory, involving two firms pricing over two periods, emphasizes that price dispersion may 
result from such competition.  This result is also available in static, one-period problems. 
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An important oversight of the literature is the absence of discounting.  Virtually the entire literature 
presumes no discounting.  In the hotel context, zero discounting makes sense, because even if one books a 
hotel in advance, generally payment isn’t made until the time one stays in the hotel, which implies the 
same discount factor whether one books the room early or later.  With airline tickets, however, generally 
payment is made at the time of booking, not at the time of departure.  This matters because the time 
intervals are long enough for discounting to be significant, given the tickets may be booked six months in 
advance. 

3. Dynamic Price Discrimination with Price Commitment 

The extent of price changes found in actual airline pricing is mysterious because a monopolist with 
commitment ability, in a standard framework, doesn’t want to engage in it at all!  To develop this 
conclusion first proved by Stokey (1979), we start with a simplified version of her analysis.  This analysis 
was dramatically extended by Board (2004).  The seller sells either a durable good or a one-time use good 
like an airplane trip.  Time is composed of discrete periods t = 1, 2, … and buyers and the seller have a 
common discount factor δ.  There are a continuum of potential buyers who have values represented by a 
demand q, so that q(p) gives the measure of buyers willing to pay p.  We assume that a consumer’s 
demand persists until the consumer purchases.  The monopolist chooses a price sequence p1, p2, … which 
can be taken to be non-increasing without loss of generality.  A consumer with a value v will prefer time t 
to time t+1 if 
 

 v – pt > δ(v – pt+1)         [1]         

 
The equations producing indifference, v – pt = δ(v – pt+1), define a sequence of critical values vt that make 
the buyer indifferent between purchasing at t and purchasing at t+1.  Note that the incentive constraint on 
buyers shows that, if a buyer with value v chooses to buy before time t, then all buyers with values 
exceeding v have also purchased by this time. 
 

 vt – pt = δ(vt – pt+1)         [2] 
              

 
This set of equations can be solved for pt in terms of the critical values: 
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Thus, the optimum level of vt is constant at the one-shot profit maximizing level, which returns the profits 
associated with a static monopoly.  The ability to dynamically discriminate does not increase the ability of 
the monopolist to extract rents from the buyers. 
 
There is an important lesson to be drawn from Stokey’s theorem.  If dynamic price discrimination is 
playing a role, it is because of new customers arriving, rather than an attempt to extract more profits from 
an existing set of customers by threatening low value customers with delayed purchases.  That is, 
dynamic price discrimination is driven by customer dynamics rather than price discrimination over an 
existing set of customers. 

4. Continuous Time Theory 

Gallego and van Ryzin (1994) produced a closed form model of discrete time optimal pricing.  This 
model is very useful for its tractability, and we reproduce some of their analysis here, as well as extend it 
by generating predictions about the average path of prices. 
 
Let λ be the arrival probability of customers per unit of time, assumed constant.  A constant arrival can be 
assumed without loss of generality by indexing time in terms of customer arrivals.  Time will start at 0 
and end at T.  If not sold, the product perishes at T, which might occur because a flight takes off or the 
product is time-dated like a hotel room or time-share condominium, where what is for sale is the use of 
the product on date T.  For technical reasons, no discounting is considered in this section.  However, in 
some applications, no discounting is the right assumption.  For example, hotels generally do not charge 
until the customer arrives, independently of the time the room is booked, a situation which corresponds to 
no discounting based on late booking.  The marginal cost of the product is c, a value which might include 
normal marginal costs (cleaning a hotel room, a meal served on an airline) but could also include lost 
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business – the customer that takes a particular flight is less likely to take an alternative flight by the same 
airline.  Potential customers demand a single unit, and their willingness to pay is given by a cumulative 
distribution function F.   
 
The value of having n items for sale at time t is denoted by vn(t).  Clearly having nothing to sell conveys 
zero value.  Moreover, if not sold by T, an inventory of items also has zero value, yielding: 
 

 v0(t) = vn(T) = 0.         [5] 
           

Consider a small increment of time, ∆, beyond a current time t.  With probability 1-λ∆, no customer 
arrives, so that the current value becomes vn(t+∆).  Alternatively, with probability λ∆, a customer arrives 
and the firm either makes a sale or does not.  For price p, the sale occurs with probability 1-F(p).  When a 
sale occurs, the value becomes p - c + vn-1(t+∆), because the inventory is decreased by one.  
Summarizing: 
 

 ( ))()())())((1()()1(max)( 1 ∆++∆++−−∆+∆+∆−= − λλλλλ tvpFtvcppFtvtv nnnpn  

            [6] 

or 
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Therefore, dividing by ∆ and sending ∆ to zero, 
 

 ))()())((1(max)( 1 tvtvcppFtv nn
p

n −+−−=′− −λ    [8] 

 
The expression for )(tvn′  is composed of two terms.  First, there are profits from a sale, p-c.  Second, 
there is the lost option of selling the unit in the future, an option that has value )()( 1 tvtv nn −− .  It is 
not possible to solve this differential equation for an arbitrary demand function F.  However, with a 
convenient choice of F, it is possible to provide an explicit solution.  Let 
 

 .1)( apepF −−=          [9] 

 
Note that (1-e-ap)(p-mc) is maximized at .1* mcap += 2  Then 

 

                                            
2 Let h(p)= (1-e-ap)(p-mc).  ))(1()( cpaapeph −−−=′   0)( =′ ph implies 0)( ≤′′ ph .  Thus, every extreme 
point is a maximum, and so if there is an extreme point, it is the global maximum.  Moreover, p* is an extreme 
point. 
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The multiplicative constant ace −−= 1λβ  represents the arrival rate of buyers willing to pay the static 

monopoly price .1 ca +   Thus, at time t, the expected number of buyers willing to pay the monopoly 

price is β(T-t).  This observation helps explain why 
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will appear in the solution.  The first result characterizes the value function and prices in a closed-form 
manner. 
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At time zero, suppose there is an initial capacity k.  Let qi(t) be the probability that there are i units left for 
sale at time t. 
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Lemma 1 and Theorem 2 give a complete, closed form description of profits, prices and sales for the 
dynamic monopolist practicing yield management.  For example, the probability that there is no available 
capacity at time T is 
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This formula insures that, with sufficient time and a given capacity k, the flight sells out, because  
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How does a thick market affect the outcome?  To model this, consider increasing both the capacity k and 
the arrival rate of customers, λ, proportionally.  Let γ=βT/k, so that  
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What is interesting about this expression is that the probability of selling all the capacity, q0(T), converges 
to the same level as would arise if the price was just constant at the monopoly price .1 ca +   Since the 

price exceeds this level always, because the option value is positive, the price must get very close to the 
static monopoly price most of the time in order for the limiting probabilities to coincide.  Per unit profits 
of the dynamically discriminating firm are 
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As an alternative to yield management and dynamic price discrimination, consider a firm that sets a price 
and leaves it fixed.  Such a firm, a one-price monopolist, will earn lower profits than the yield-
management firm.  Is the profit reduction significant? 
 
A monopolist who only offers one price p will have a flow-rate of sales of µ=λ(1-F(p)).  If ηi(t) is the 
number of future sales given capacity i at time t, then η0(t)=0 and  
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The profits associated with a single price can be numerically maximized.   
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Figure 1 provides an example of dynamic price discrimination, starting with ten units for sale.  The 
parameters include zero marginal cost, a 365 day period with an average of one customer every other day, 
and demand in the form 1 – F(p) = e-p.  The prices associated with various numbers of units to be sold are 
illustrated, for example, p3 shows the optimal price associated with three units to be sold.  The average 
price, conditional on units remaining for sale, is denoted by Ep; this represents the average of posted 
prices.  Note that units may not be available for sale, so that the expected price is a bit of a fiction, 
although the comparison to the “one price monopolist” is sensible since that price may also not be 
offered.  The optimal constant price is denoted in p1.  Profits are 5.45% higher under dynamic price 
discrimination than they are with a constant price.  In this figure, the monopoly price is the horizontal 
axis, at 1, and either scheme improves substantially on the static monopoly price. 
 

 
 

Figure 1: Prices, and expected price, k=10, λ=½, α=1, ϕ=0, T=365. 

Figure 1 illustrates a common feature of simulations: the expected price rises, then falls.  The forces 
involved are as follows.  First, prices must eventually fall because there is a positive option value prior to 
time T, and this option value is zero at time T.  Thus, prior to T, prices are strictly larger than the static 
monopoly price and converge to the static monopoly price at T.  While it is possible that prices fall for the 
entire time interval, they may initially rise because early sales, by reducing available capacity, drive up 
the prices. 
 
Figure 2 illustrates the probability that all units sell under dynamic price discrimination.  This converges 
to slightly over 85.35% by the end of the period. 
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Figure 2: The Probability of Zero Capacity 

 
Is dynamic price discrimination profitable when k and λ are both very large?  Let θ represent λ/k.  In this 
case, the solution for demand is 
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This is maximized at the static monopoly price, ,1 ca +  provided γ=θe-1-acT <1.  Otherwise, the optimal 

price satisfies θe-apT = 1.  It follows that profits are 
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discriminatory profits in the limit for large k.  That is, per unit gain in profits of dynamic price 
discrimination over an optimally chosen constant price converges to zero, although the total gain will still 
be positive.  This happens because most sales take place at an approximately constant price; dynamic 
price discrimination is advantageous only as the probability of actually selling out changes, for a 
relatively small portion of the very large number of sales.  One can reasonably interpret these results to 
say that dynamic price discrimination only matters on the last twenty or so sales, so when a large number 
of units are sold, dynamic price discrimination doesn’t matter very much. 
 
Dynamic price discrimination has a relatively modest effect when there are 100 or more seats available.  
The kinds of profits predicted, for reasonable parameter values, under dynamic price discrimination are 
not very large, less than 1%, when compared to an appropriately set constant price.  An important aspect 
of this conclusion is that dynamic price discrimination does not appear to account for the kinds of value 
claimed for American Airlines’ use of yield management. 

5. Efficiency in the Gallego & van Ryzin Model 

An efficient solution in this model has the property that the value function maximizes the gains from trade 
rather than the profit.  The value function, then, satisfies 
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where C(p) is the consumer’s value, plus seller profit, conditional on the consumer’s value exceeding p.  
In this model,  
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Thus the efficient solution is the solution a monopoly whose costs are reduced by 1/a, the static monopoly 
profit, would choose.  The assumed structure of demand insures that all the qualitative conclusions drawn 
apply equally to efficiency as to monopoly.  In particular, the shape of the time path of prices and the 
conclusion that for large problems the gains of dynamic price discrimination are small apply equally to 
efficient solutions as they do to monopoly solutions. 
 
In our view, the Gallego & van Ryzin model is not a very useful instrument for examining efficiency, 
because of the similarity of the monopoly price and efficient price.  Reducing a monopolist’s marginal 
costs by the monopolist’s markup does not produce the efficient price, but a higher price under the 
standard regularity conditions like log concavity.  However, it is worth emphasizing that the efficient 
solution and the monopoly solution lead to the same set of price paths, so that if costs are unobservable, 
the two models are observationally equivalent. 

6. Efficiently Allocating Limited Capacity under Uncertainty 

The closed form of Gallego – van Ryzin facilitates computation but obscures economic considerations 
because of the nature of the demand.  In this section, we consider efficiently solving the allocation 
problem, rather than maximizing profit.  Efficiency is not unreasonable, since airlines face competition 
and a perfectly competitive model would suggest the efficient allocation of the available quantity.  It 
seems likely that neither the monopoly nor the fully efficient solution accurately represent the real world, 
which probably falls somewhere in between the two extremes.  Borenstein and Rose (1994) is perhaps the 
foremost example of an attempt to assess airline price competition, but at the level of average fares.  
Developing a theory that permits assessing the degree of competition at the detailed level of the price 
path, in contrast, presents a formidable challenge.  Observations of quantities are going to be central to 
the assessment of the degree of competition, because price observations alone are not sufficient to 
identify the model. 
 
This kind of efficient allocation problem was first studied in the context of electricity generation.  Costs 
of capacity induce a peak load problem (Boiteaux 1949, Williamson 1966), so named because the 
marginal cost of electricity generation is much higher when the plant capacity is reached than below that 
level, so that the peak load matters a lot to the economics of electricity generation.  The standard 
assumption in peak load problems is that demands in each period are independent, and that the full supply 
is available in each period.  The peak-load problem is really a capacity planning problem, where the 



 14

needed capacity depends on prices.  For a two period model, let qi be the demand in period i.  The firm’s 
profits are given by 
 

 ),(},{max 21212211 qqmcqqqpqp +−−+= βπ    [21] 

  
where β is the marginal cost of capacity and mc is the marginal cost of production. 
 
In the airline and hotel context, the standard peak load model is poorly suited, because capacity sold in 
one period isn’t available in the subsequent period.  Thus, the standard model of the peak load problem 
asks how large a plane that flies round-trips between Dallas and Chicago should be, given variation in 
total demand from day to day or from week to week.  While this problem represents an important 
logistical problem, it has little or nothing to do with dynamic pricing.  In contrast, airlines also face the 
problem that seats on a particular flight can’t be occupied by two passengers, and this problem of 
allocating limited capacity suggests a quite distinct peak load model.  Moreover, the fact that future 
demand isn’t known at the time of contracting in the first period is a crucial aspect of the peak load 
problem facing airlines and hotels.  That is, airlines and hotels contract for initial sales, not knowing the 
realization of overall demand. 
 
We introduce a new model of random arrival that has some attractive properties.  The randomness comes 
in the form of random variables nt in period t, with period t demand being, then, nt q(p) for price p.  We 
also assume that nt is observable at the beginning of period t, so that the firm can either set price or 
quantity in that period; what is uncertain is the future demand, not the current demand.3  We will focus on 
the constant elasticity of demand case, q(p)=αp-ε, because this is a standard empirical model and assists in 
tractability.  We will refer to q(p) as per capita sales, and nt q(p) as total sales, but this interpretation isn’t 
exact in the airline context.  In the airline context, if nt is the number of customers, q(p) would have to be 
the probability of sale, in which case it should be no greater than one, which is inconsistent with the 
constant elasticity assumption.  At best, the model represents an approximation for the airline context. 
 
This section considers only the efficient allocation.  The efficient allocation is interesting for several 
reasons.  First, competition with other providers will generally push firms’ product offerings toward 
efficiency and away from monopoly, so with vigorous competition, efficiency maximization is probably a 
better model than monopoly profit maximization.  Second, the monopoly model has been better studied 
than the competitive, efficient model.  Third, some of the interesting behavior in the monopoly model 
does not arise from price discrimination but because of the dictates of efficiency.  The source of the 
behavior is challenging to see without studying the efficient allocation.  That is, what appeared to be price 
discrimination is merely variations in marginal cost. 
 
The seller has a capacity K.  We will focus on the two-period case throughout this section, although this 
readily generalizes to more periods. 
 
If per capita sales are s1 of the n1 first period demand, the number of seats available for sale in the second 
period is K – s1n1.  These are valued by consumers at a price p2 satisfying 
 

K – s1 n1 = n2 q(p2)          [22] 

 

                                            
3 Dana’s 1998 model is a special case, with q taking on two positive values, interpreted as a willingness to pay for 
leisure and business travelers. 
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The cost of first period sales rises quite dramatically in the number of sales.  Suppose q has constant 
elasticity of demand, q(p)=αp-ε.  We assume ε>1 so that the consumer surplus is finite.  For any given n2, 
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The price p1 that clears the market in period 1 satisfies s1 = q(p1).  The customer’s value of quantity q is 
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The gains from trade are maximized at  
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The per capita second period sales are 
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Because 
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sp , it is a rudimentary calculation to show that the expected price in the first 

period and second period coincide.  Equality of the prices is a necessary condition for maximizing the 
gains from trade; otherwise it would increase the gains from trade to allocate more of the seats to the 
high-priced time. 
 
Some seats are misallocated, because contracting with the early customers occurs prior to knowing the 
realization of number of later customers.  Moreover, it is worth emphasizing that this misallocation is 
efficient – maximizes the gains from trade – and not a consequence of monopoly pricing.  In our 
terminology, it is dynamic pricing but not dynamic price discrimination.  How large is the effect?  The 
average reduction in the share of period two customers satisfies 
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Theorem 4: The second period share is larger on average than the first period share, that is, 
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Proof in Appendix. 
 
Theorem 4 shows that the share of customers served in the second period is at least as great as are served 
in the first period.  This is a consequence of the possibility of small denominators leading to large shares; 
when few customers arrive, the price is set low enough to insure the plane sells out.  The sales as a 
fraction of the average value of n2 are less than in period 1.  That is, 
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Insight into the magnitude of this efficient misallocation is given by the next result.  Let  
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Proof in Appendix. 
 
The share of seats allocated to the first period may deviate from the efficient equal share by as much as 
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121 CV ; for the case of ε=2 and CV = 1, this could be 50%.  The bound in Theorem 5 is exact, in 
the sense that for a binomial random variable with one value equal to zero, the right inequality holds with 
equality, and at ε = 1, the left inequality holds with equality. 
 
The gains from trade generated are 
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The firm’s revenue is 
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Thus, firm revenue is proportional to welfare under constant elasticity of demand, and the analysis of 
revenue maximization (under efficiency, of course) analyzes welfare maximization.  To perform this 
analysis, we turn to the log normal case. 
 
The inefficiency in this model arises because contracting with early customers occurs prior to the time 
that period two demand is realized.  How large is this inefficiency?  To answer that question, we consider 
the case where ni is log-normally distributed.  In the log normal distribution case, the welfare losses 
associated with the missing market can be very large. 
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7. The Log Normal Case 

If the distribution of n2 is log-normal, so that the log(n2) is normally distributed with mean µ and  variance 
σ2, many of the expressions have closed forms, greatly facilitating computation.  In particular,  
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The coefficient of variation for n is  
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The expected gains from trade are 
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How much does sequential contracting cost in terms of revenue or welfare?  We treat n1 at the expected 
value of a lognormal with the same variance but different mean than n2.  The proportion of the gains from 
trade preserved through contracting over two periods is denoted %∆W.  It has the value 
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We show by example that %∆W can be as low as 64%, that is, the inability to contract in advance reduces 
welfare by a third relative to simultaneous contracting.4 
 
This example has a much larger future population of demand than first period demand.  However, the 
variance of demand is large too, and this causes the losses associated with uncertainty to be very large.  In 

particular, 
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for most of the efficiency loss.  Even for more reasonable parameters, losses can be 15% or more.  An 
example, with up to 20% losses, is illustrated in Figure 3.  In these examples, the n1 takes on the values 
0.6, 20 and 1808, while the expected value of n2 takes on the values 90, 2981 and 268337. 
 
 

 
Figure 3: Efficiency loss relative to simultaneous contracting. Parameters: µ1 = -5, µ2 = 0. 

 

                                            
4 Specifically, one set of parameters is ε = 3.474, σ2 = 11.651, µ = 45.153, and n1 = 1.28 × 1028

.  This set of 
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.1024.1 281

2 ×=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ε
εnE

 

2 4 6 8 10

0.8

.85

0.9

.95
σ2=3 

σ2=4
σ2=5 

∆W 

ε



 20

The main conclusion is that the important effects in dynamic pricing arise not from an attempt to extract 
more money from the consumer, but from incomplete markets, and in particular from impossibility of 
simultaneous contracting with all potential buyers.  Dynamic pricing is used primarily to mitigate the 
costs of these missing markets.  Moreover, welfare costs of the missing markets are potentially quite 
large.  This conclusion suggests that options, which create markets for advance contracting, are an 
important aspect of both maximizing revenue and of efficiently allocating resources. 

8. Options and Interruptible Sales 

The welfare losses identified in the previous section arise because of incomplete markets.  In particular, it 
is not possible to contract with the period 2 agents at the time that the period 1 market clears.  This lack of 
contracting leads to inefficiency because sometimes too many seats are sold in the first period, when the 
demand in the second period is unusually high, while sometimes too few are sold, because demand was 
unexpectedly low.  A solution to this problem generally is to sell contingent seats, that is, to sell an 
option. 
 
In this case, the main value of the option is to permit the seller to sell the seat to a higher value buyer in 
the second period.  This kind of option is little used in hotels and airlines, but is quite common in pipeline 
transport where it goes by the name of interruptible transmission rights, as opposed to firm (guaranteed) 
rights.  Priceline.com sold a kind of interruptible service, where they sold the ticket well in advance but 
didn’t specify the time of the flight until a day or so in advance. 
 
To gain some insight into the sale of interruptible service, consider first selling two qualities of service, ϕ1 
> ϕ2, where ϕi is the probability of service, and these are sold at prices p1 > p2.  A consumer with type v 
values good i at ii pv −ϕ .  A type v consumer prefers type 1 if 
 

,2211 pvpv −≥− ϕϕ          [35] 
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In addition, a consumer prefers good i to nothing at all if 0≥− ii pvϕ .  If 
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consumer ever buys good 2, so we impose the condition, without loss of generality, that 
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Let ci be the marginal cost of service type i.  The seller’s profits are 
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It is helpful to introduce the notation ))(1)(()( pFxpMaxxR

p
−−= , which is the profit 

maximization associated with one good.  Let ))(1)((arg)(* pFxpMaxxp
p

−−=  be the solution to 

the one good maximization problem.  Marginal revenue is decreasing if p* is an increasing function, so 
that an increase in cost reduces the quantity and increases the price charged by the monopolist.  This is a 
standard assumption. 
 
Theorem 6: Suppose marginal revenue is decreasing.  A profit-maximizing monopolist sells the low 

quality good 2 if and only if 
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The proof is in the appendix.  The interruptible good problem breaks up into two separate maximization 
problems, one for the low quality good, and one for the difference of the low quality good and the high 
quality good.  This type of result is distinct from the usual result where a monopolist selling to two types 
of consumers offers two qualities; here the monopolist is selling two goods to a continuum of consumers.  
The present result is reminiscent of Mussa and Rosen’s 1978 analysis, however. 
 
Consider a seller that didn’t sell good 2, and then begins selling good 2.  Does that seller’s price rise, or 
fall?  The price falls if 
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Thus, if p* is concave, the price falls when the second good is introduced, and the price rises when p* is 
convex.  In the case of uniform distributions of values, or exponential distributions, or constant elasticity, 
p* is linear in cost, and thus introduction of the second good doesn’t change the price p1.  More generally, 
it may increase or decrease. 
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In the airline context, the cost of a sale is generally a shadow cost – how much revenue is foregone 

because the seat is taken?  Consequently, the condition 
2
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ϕϕ
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≥  is automatically satisfied.  The cost of 

a probability of service ϕ1 entails a loss in flexibility relative to the service level ϕ2.  That loss in 
flexibility means not rescheduling the service in circumstances in which is would be desirable to do so.  
Thus the cost c1 should be an average of c2 over the flights when the interruptible service is offered as 
scheduled, plus the cost in circumstances where it was profitable to interrupt.  Since the latter should 
exceed the former given optimal interruptions, the cost of service for case 1 should exceed the cost in case 
2, which means it is always optimal to offer the interruptible service. 
 
As a practical matter, the “right” interruptible service is probably a ticket that lets the airline choose the 
time the passenger flies, but sets the flight in a day.  The need to coordinate air travel with hotels and 
other destination activities restrict the ability of the most passengers to be flexible over multiple days.  
Nevertheless, flexibility with respect to the time of travel potentially produces significant gains in the 
expected value of air travel, both in the ability of the price system to identify and allocate seats to the high 
value passengers, and the ability to utilize more capacity. 
 
The gains from trading options are larger when the firm posts a price that is good for an appreciable 
amount of time.  This phenomenon was studied by Dana (1999a).  Random demand will generally create 
a misallocation, which we modeled by allocating first period seats without yet knowing second period 
demand.  However, under a posted price, seats will be misallocated because the posted price will 
generally not be the correct price to clear the market, either creating a surplus or a shortage.  Consider the 
model developed in the previous section, with a random demand in the form nq(p) and constant elasticity 
q(p)=αp-ε.  Let K be the capacity and suppose that when capacity binds, the customers are a random 
selection of those willing to purchase.  The gains from trade under a constant price are 
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This equation arises because, when K<nq(p), the capacity constraint binds, and the gains from trade are 
the average of the value of seats over the set of consumers willing to buy those seats.  One interesting 
feature of this equation is that efficiency requires a positive probability of empty seats.  If there is a zero 
probability of empty seats, then the price is lower than the market clearing price.  Low prices create 
random assignments when demand is large, which entails a loss of efficiency; this loss is balanced against 
the extra seats sold when demand is low.  Indeed, the first order condition for maximizing W can be 
expressed as: 
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        [40] 

 
Thus, the probability that capacity binds, K≤nq(p), is positive at the price maximizing the gains from 
trade. 
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9. Actual Airline Pricing Patterns 

In order to assess the extent of dynamic price discrimination, we collected data on four city pairs: 
 
Los Angeles (LAX, BUR, SNA) to Las Vegas (LAS) 
Bay Area (SFO, SJC, OAK) to Portland (PDX) 
Dallas (DFW) to Oklahoma City (OKC) 
Dallas (DFW) to Tulsa, OK (TUL) 
 
We collected data on price offers from Orbitz, Travelocity and for part of the period, from AA.com.  
Unfortunately, Southwest Airlines is not featured on any of these sources.  Of these nine airport pairs, 
four (LAX and BUR to LAS, SJC and OAK to PDX) are also served by Southwest.  One would expect 
Southwest to exert a moderating influence, given its relatively low variance in prices, although Southwest 
has introduced a six fare structure which may result in more dispersion, rather than less.5  In any case, 
with the data available, the effects of Southwest’s presence will have to remain a topic for further 
research.  Purchasing an American Airlines ticket on AA.com is generally $5 cheaper, but showed no 
other difference.  The figures below only show fares quoted by Orbitz, which had the most extensive 
offerings. 
 
We collected data on flights, all in the year 2004, departing on 8/26, 8/28 8/29, 9/09, 9/11, 9/12, 9/23, 
9/25, 9/26, 10/7, 10/9, 10/10, 10/21  10/23 and 10/24.  Six airlines represent over 99% of the data, with 
the following proportions of the flights.  Average prices and the frequency of airlines are presented in 
Table 1. 
 

Table 1: Average Prices in the Data 

Airline AA Alaska Delta United AmWest USAir NW 
Proportion of Flights 25.5% 22.7% 6.1% 14.6% 8.9% 16.1% 6.1% 
Average Price $108.05 $126.59 $79.03 $44.06 $66.17 $239.01 $191.48 
 
There are five major propositions that can be tested with the data. 
 

1. Prices fall as takeoff approaches 
2. Prices are rising initially 
3. Competition reduces variance of prices 
4. Prices change with each seat sold 
5. Prices of substitutes are correlated 

a. Substitute times/days 
b. Substitute airports 

 
The first proposition is that prices are falling as takeoff approaches.  This is a remarkably robust 
prediction of theories that have identical customer types arriving over time.  The robustness follows from 
the following observation.  The cost of selling a seat is composed of three components.  First, there is the 
cost of service.  Second, there is the cost of not selling that seat on a substitute flight.  This second 
component includes any psychological effects on consumer expectations – consumers may reason that 
current low prices are indicators of likely low future prices, which tends to make demand more elastic, to 
the airline’s detriment.  Third, there is the foregone option of selling the seat later on the same flight.  The 
first two costs are roughly constant over time, and certainly approximately constant as the flight 
                                            
5 The six classes, with sample fares (BUR to LAS) are Refundable Anytime ($94), Restricted ($86), Advance 
Purchase ($72), Fun Fares ($49), Promotional ($39), and Internet One-way ($39). 
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approaches.  The third cost, however, goes to zero as the flight approaches.  Thus, most theories will 
suggest that prices fall in the last moments before a flight, not necessarily to zero but to some optimal 
price reflecting the market power of the airline and the effect of low-price sales on sales of future flights.  
But the price should still fall. 
 
A more specialized prediction is that the average price rises initially.  This is a feature of the Gallego-van 
Ryzin model already discussed, and others.  It is more intuitive in models in which consumers can search 
than in the more common model where consumers who don’t purchase disappear; if prices are falling on 
average, consumers will tend to wait to purchase.  Late falling prices aren’t so obviously exploitable 
because of the significant likelihood of the plane filling up.  Thus, consumers must weigh the expected 
gains from delay against the costs of failing to acquire a seat at all; the latter cost is negligible with a 
sufficiently long time-horizon.  
 
To assess these propositions, we ran the following regression to predict the price.  We have dummy 
variables for days with one, two, three and four weeks remaining, airline-specific dummies (American 
omitted), hour of takeoff (overnight omitted), and city-pair identifiers (LAX to LAS omitted).  We 
omitted Burbank, Long Beach and SNA airports based on few flights over the period.  We only examined 
one-way economy fares, and have 138371 observations.  The 38 variables account for 73.5% of the 
variation. 
 
Prices rise $50 in the week before takeoff, which is on top of a rise of $28.20 the previous week.  The 
penultimate fortnight before takeoff accounts for $16 in price increases.  There is a slight, 1.9 cent per day 
increase prior to that.  Thus, the main time-path prediction of the standard theory appears to be 
empirically false.  These effects are quite significant, thanks to the size of the database.  (We have not 
attempted to control for correlation in observations, so that the t-statistics, which treat observations as 
independent, likely overstate the significance.)  The important conclusion is that changing demand is a 
salient feature of the data, and models that assume that the shape of demand is constant over time are 
empirically invalid. 
 
A few other remarks follow from the regressions.  Although American Airlines is a low priced airline in 
the data, it is high-priced adjusting for fixed effects, though not as expensive as US Air.  Prices are 
highest mid-day and early evening.  LAX is a relatively inexpensive airport, while San Francisco is high-
priced.  This suggests that competition and thick markets do not provide a good account of pricing, since 
San Francisco has a large number of flights.  Southwest’s presence at LAX, OAK and SJC might help 
explain the average pricing.  Note, however, that airport dummies are also accounting for the length of 
flights, so comparisons should only be made among distinct airport pairs for a given city-pair. 
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Table 2: Price Regression 

 Estimate SE TStat PValue 
Constant 54.1 0.9906 54.6 1.1 X 10- 642 
Days 0.0192 0.0067 2.9 0.0042 
WK1 50.0 0.6071 82.4 6.4 X 10- 1441 
WK2    28.2 0.6091 46.3 1.7 X 10- 464 
WK3   10.6 0.6511 16.3 0. 
WK4   5.8 0.6364 9.1 0. 
Alaska  - 4.6 0.5006 - 9.2 4.3 X 10- 20 
Delta   - 24.1 0.6112 - 39.4 6.4 X 10- 337 
United   - 6.3 0.5894 - 10.6 2.4 X 10- 26 
Amwest    6.5 0.6725 9.6 0. 
USAir    86.8 0.5801 149.6 3.1 X 10- 4508 
NW     - 16.9 0.7070 - 23.9 8.6 X 10- 126 
AM6     - 15.5 0.8189 - 18.9 2.0 X 10- 79 
AM7     - 6.3 0.8380 - 7.5 5.5 X 10- 14 
AM8   - 3.7 0.8348 - 4.4 0. 
AM9   - 1.4 0.8806 - 1.6 0.1173 
AM10     9.9 0.9115 10.8 0. 
AM11    3.7 0.8221 4.5 6.1 X 10- 6 
Noon 5.9 0.8504 6.9 4.7 X 10- 12 

PM1     - 3.6 0.8696 - 4.2 0. 
PM2   - 1.3 0.9844 - 1.3 0.1932 
PM3    2.6 0.7849 3.3 0.0009 
PM4   - 1.2 0.9832 - 1.3 0.2044 
PM5    7.4 0.8073 9.2 0. 
PM6     - 3.4 0.8424 - 4.1 0. 
PM7    3.5 0.8061 4.3 0. 
PM8   - 5.8 0.9118 - 6.4 2.0 X 10- 10 
PM9     - 2.0 1.0 - 2.0 0.0496 
TUL2DFW   41.9 0.7870 53.2 4.7 X 10- 611 
OKC2DFW   41.9 0.8412 49.8 1.2 X 10- 535 
DFW2TUL   41.5 0.8068 51.4 7.4 X 10- 571 
DFW2OAK  31.8 0.8381 37.9 4.5 X 10- 313 
SFO2PDX   149.6 0.5144 290.8 3.9 X 10- 14331 
SJC2PDX   44.6 0.8246 54.1 3.1 X 10- 632 
OAK2PDX   49.4 0.7120 69.4 8.7 X 10- 1031 
PDX2SFO   152.1 0.5264 288.9 6.4 X 10- 14184 
PDX2SJC  43.7 0.8253 53.0 1.3 X 10- 605 
PDX2OAK   46.5 0.7352 63.2 1.8 X 10- 858 
LAS2LAX   - 6.9 0.4877 - 14.1 2.9 X 10- 45 

 
In another paper (Carbonneau, McAfee, Mialon & Mialon 2004), it is shown that the third proposition is 
not supported in a large dataset of airline prices.  Indeed, more competition was weakly correlated with 
more dispersion, not less.  This finding is consistent with Borenstein and Rose’s 1994 findings. 
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Some theories posit a “two price” structure, others permit prices to vary continuously.  In the data, some 
airlines clearly lean toward a two price structure.  For example, American Airlines’ prices on OAK to 
PDX show evidence of two main prices, with a third just prior to takeoff.  This is illustrated in Figure 4.6  
Most of Northwest’s fares show just two prices. 
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Figure 4: American OAK to PDX, September 23. 

 
However, other flights show evidence of almost continuous adjustment, and indeed sometimes American 
appears almost to randomize its offers.  Figure 5 shows an example of two American Airlines flights, AA 
1038 on Sept 23 and Sept 25, with remarkable variation. 
 
So the evidence in favor of this proposition – continuous adjustment of prices – is mixed.  Why do 
airlines use two prices?  A standard economic explanation is that there is a value in price commitment to 
assist in consumer planning.  This is the reason given for restaurants, movies, and the like to maintain a 
constant price, or two prices, in the face of predictably fluctuating demand.  However, prices don’t seem 
nearly predictable enough for predictability to be the reason for using only two prices.  A more plausible 
theory is that airlines use two prices because the theory is better developed for two price systems.  This is 
plausible for a consistent airline like Northwest, but implausible for American Airlines, which has 
extraordinary price adjustments on other routes. 

                                            
6 The figures identify flights Airline_Flight Number_Departure Date.  All data in the figures comes from Orbitz’s 
website. 
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Figure 5: American 1038 prices plotted against days prior to 9/25 

The final prediction of the theories is that the prices of substitutes should be correlated.  This, again, is a 
robust prediction and requires only consumer substitution as a hypothesis.  To assess this, we looked at 
the correlation between prices of flights from the bay area to Portland, and Portland to the bay area.  
Based on travel times, it seems that SFO and SJC should be the closest substitutes, followed by SFO and 
OAK, followed by SJC and OAK.  In fact, however, the correlations are almost exactly the reverse. 
 
Table 3: Correlation Coefficients 

 Flight Pair ρ Flight Pair ρ 
1 SFO2PDX, SJC2PDX 0.167 PDX2SFO, PDX2SJC 0.596
2 SFO2PDX, OAK2PDX 0.190 PDX2SFO, PDX2OAK 0.568
3 SJC2PDX, OAK2PDX 0.867 PDX2SJC, PDX2OAK 0.954
 
Table 3 shows the correlation coefficient of average prices, with the correlation between mean price 
offers on each route as a function of the number of days prior to departure.  The prediction is that the first 
row of the table should have the highest correlation, followed by the second, followed by the third.  
However, approximately the opposite arises.  The presence of Southwest at San Jose and Oakland, but not 
at San Francisco, may be the explanatory factor, especially in light of the fact that the price level at SFO 
is much higher than at the other two airports. 
 
It is more challenging to assess whether there is strong correlation between substitute flights on the same 
route.  The following picture shows some correlation over time of the substitute flights between Portland 
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and Oakland at 6PM, 7PM and 8PM (± ½ hour).  These flights have an average correlation coefficient of 
about 0.8 overall. 
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Figure 6: PDX to OAK, return, at various times 

 
On the other hand, Figure 7 presents a similar examination of economy flights from LAX to LAS.  No 
such correlation is readily apparent and these flights are weakly correlated.  Afternoon flights, presented 
in Figure 8, are similar. 
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Figure 7: LAX to LAS Economy class, 6AM to 9AM 

 
Overall, the major predictions – including the most robust predictions – of the theories appear to be 
violated in the data.  Consequently, new theories, and probably a new approach to the analysis, are 
needed. 

10.  Research Projects and Mysteries 

There are many research projects that flow from the analysis of this paper.  First, much of the existing 
work is founded on a monopoly description.  The analysis of this paper suggests that recasting the model 
as a competitive model may increase the tractability of the model without sacrificing either empirical 
relevance or complexity of behavior. 
 
Second, the sale of options present the possibility of enhancing the efficiency of advance contracting, a 
possibility that has been little explored.  Continuous time techniques from the finance literature may play 
an important role in developing a theory of options for perishable goods.  This seems a fruitful approach, 
because options themselves are perishable, and continuous time stochastic calculus techniques have 
played an important role in simplifying similar problems. 
 
The existing theory fared poorly when confronted with the data.  In particular, the failure of prices to fall 
as takeoff approaches is devastating to theories, leaving standing only those theories in which late 
arriving potential passengers have a relatively high willingness-to-pay.  While this is a reasonable 
hypothesis, it nonetheless needs further development, and it is challenging to think of natural assumptions 
to impose order on the problem, once demand can be almost anything. 
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The data present a variety of mysteries.  The gains to searching are occasionally enormous.  While prices 
rise as takeoff approaches, occasionally they bounce around considerably.  This finding is mirrored in 
Etzioni et al, which empirically examined the gains to searching for flights.  They find an average savings 
of 27% by using a search algorithm, relative to just booking the flight the first time it is checked.   
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Figure 8: Afternoon LAX to LAS Flights by time of departure 

 
What is perhaps even more mysterious, and illuminating, is an incident that occurred in mid-July on 
Alaska 101, a flight from OAK to PDX.  For approximately a week, the price of AL101 departing 9/23 
nearly doubled, while the prices of the 9/25 and 9/26 departures were approximately unchanged.  The 
9/26 departure had been more expensive.  In fact, the price of the 9/26 departure then fell briefly.  This is 
illustrated in Figure 9. 
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Figure 9: Prices of AL101, departing 9/23, 9/25 and 9/26 

 
Given its departure time, American Airlines 6825 is a major substitute for AL101.  During this time, AA 
6825’s flight experienced only a very modest increase in price, which is illustrated in Figure 10. 
 
The price of AA6825 had been substantially higher than the price of AL 101, but when AL 101 went up, 
the price of AL 101 was much higher.  The price of the AA 6825 went up slightly, then came back down 
to the previously prevailing levels.  What makes this so mysterious is that AA 6825 and AL 101 represent 
the same airplane – AA 6825 is a code-share flight operated by Alaska airlines.  That is, the real mystery 
is why these two identical fights are being marketed at such different prices, when the fact that the flights 
are code-shared is clearly indicated on the websites. 
 
To make matters even more mysterious, the blip in prices of AL 101 coincides with a slight increase in 
the price of AA 6825 for flights departing on other days, but not the price of AL101 on other days.  This 
is illustrated in Figure 11. 
 
 
 
 



 32

0

20

40

60

80

100

120

140

160

180

200

06111622275156616671768186

AA_6825_9/23
AL_101_9/23

Average of Price

Day

Flight

 
Figure 10: Prices of AL101, AA 6825 

0

20

40

60

80

100

120

140

160

180

200

05111621284258636873788388

AA_6825_9/25
AL_101_9/25

Average of Price

Day

Flight

 
Figure 11: AL101, AA 6825 departing 9/25 
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It seems likely that American reacted to the price of its rival.  The facts that (i) the identical flight was 
being offered for so much more when booked as a code-share on American rather than on Alaska, (ii) 
Alaska’s price increase wasn’t reflected in the prices of alternate days, (iii) the price of American’s 
identical flight only rose slightly and also rose on alternative days, suggest that (1) consumers bring a 
substantial brand loyalty to the flights, (2) airlines use a fare program that reacts to pricing by others 
across a set of substitute flights, and (3) the process is poorly understood by researchers. 
 
The ease of collecting data for non-commercial use suggests that reverse-engineering the pricing 
mechanisms of airlines is a feasible and potentially very interesting research project.   

11. Conclusion 

This paper has considered so many different theories and data that it is worth emphasizing a few 
highlights. 
 
Dynamic price discrimination is primarily driven by customer dynamics rather than price discrimination 
over an existing set of customers. 
 
With a large number of units to sell, the per unit gain in profits of dynamic price discrimination over a 
constant price is small, although the total gain will still be positive.  Most sales take place at an 
approximately constant price; dynamic price discrimination is advantageous only as the probability of 
actually selling out changes, for a relatively small portion of a large number of sales.  One way to 
summarize this conclusion is that dynamic price discrimination only matters significantly on the last 
twenty or so sales. 
 
Monopoly and efficient dynamic pricing may be observationally equivalent, and are in the important 
model of Gallego and van Ryzin (1994).  Directly solving for efficient solutions presents an alternative 
approach with potential empirical merit and relative tractability. 
 
The most important effects in dynamic price discrimination arise not from an attempt to extract more 
money from the consumer, but from addressing incomplete markets, and in particular from the value and 
costs of advance contracting. Options, which create markets for advance contracting, are an important 
aspect of both maximizing revenue and of efficiently allocating resources. 
 
The interruptible good problem breaks up into two separate maximization problems, one for the low 
quality good, and one for the difference of the low quality good and the high quality good.  In the airline 
context, an interruptible good is one that provides the airline greater flexibility with respect to the time of 
flight.  The cost of delivering a seat reserving greater airline flexibility is automatically lower, and thus is 
part of both profit maximization and efficient provision of services. 
 
Efficiency requires a positive probability of empty seats.  Pricing to sell out is inefficient. 
 
Systematic changes in demand are a salient feature of the data, and models that assume that early and late 
arrivals are identical are empirically invalid. 
 
 



 34

References 
 
Badinelli, Ralph D. 2000, ‘An optimal, dynamic policy for hotel yield management’, European Journal of 
Operational Research, vol. 121, no. 3, pp. 476-503. 
 
Barut, M., and Sridharan, V. 2004, ‘Design and evaluation of a dynamic capacity apportionment 
procedure’, European Journal of Operational Research, vol. 155, no. 1, pp. 112-133. 
 
Belobaba, Peter P., and Wilson, John L. 1997, ‘Impacts of yield management in competitive airline 
markets’, Journal of Air Transport Management, vol. 3, no. 1, pp. 3-9. 
 
Board, Simon ‘Dynamic Monopoly’, Stanford University, unpublished manuscript. 
 
Bodily, S.E., and Weatherford, L.R. 1995, ‘Perishable-asset revenue management:  generic and multiple-
price yield management with diversion’, International Journal of Management Science, vol. 23, no. 2, pp. 
173-185. 
 
Boiteaux, Marcel 1949, ‘La tarification des demandes en point: application de la theorie de la vent au cout 
marginal’, Revue Generale de l’Electricite, vol. 58 (August), pp. 321-340. (English translation available 
in J Business 33, April 1960.) 
 
Borenstein, Severin, and Rose, Nancy 1994, ‘Competition and price dispersion in the U.S. airline 
industry’, Journal of Political Economy, vol. 103 (August), pp. 653-683. 
 
Botimer, Theodore C. 1996, ‘Efficiency considerations in airline pricing and yield management’, 
Transportation Research Part A, vol. 30, no. 4 (July), pp. 307-317.  
 
Brooks, M., and Button, K.J.  1994, ‘Yield management:  a phenomenon of the 1980s and 1990s?’,  
International Journal of Transport Economics, vol. 21, no. 2 (June), pp. 177-196. 
 
Carbonneau, Shane, McAfee, R. Preston, Mialon, Hugo and Mialon, Sue 2004, ‘Price discrimination and 
market power’, unpublished. 
 
Carr, Scott, and Lovejoy, William 2000, ‘The inverse newsvendor problem:  choosing an optimal demand 
portfolio for capacitated resources’, Management Science, vol. 46, no. 7 (July), pp. 912-927. 
 
Chatwin, Richard E. 2000, ‘Optimal dynamic pricing of perishable products with stochastic demand and a 
finite set of prices’, European Journal of Operational Research, vol. 125, no. 1, pp. 149-174. 
 
Dana, Jr., James D. 1999a, ‘Equilibrium price dispersion under demand uncertainty:  the roles of costly 
capacity and market structure’, RAND Journal of Economics, vol. 30, no. 4 (Winter), pp. 632-660. 
 
Dana, Jr., James D. 1999b, ‘Using yield management to shift demand when the peak time is unknown’, 
RAND Journal of Economics, vol. 30, no. 3 (Autumn), pp. 456-474. 
 
Davis, Paul 1994, ‘Airline ties profitability yield to management’, SIAM News, vol. 27, no. 5 (May/June). 
 
de Boer, Sanne V., Freling, Richard, and Piersma, Nanda 2002,  ‘Mathematical programming for network 
revenue management revisited’, European Journal of Operational Research, vol. 137, no. 1, pp. 72-92. 



 35

 
deB. Harris, Frederick H., and Pinder, Jonathan P.  1995, ‘A revenue management approach to demand 
management and order booking in assemble-to-order manufacturing’, Journal of Operations 
Management, vol. 13, no. 4, pp. 299-309. 
 
Deneckere, Raymond and McAfee, R. Preston 1996, ‘Damaged goods’, Journal of Economics and 
Management Strategy, vol. 5, no. 2 (Summer), pp. 149-174. 
 
Etzioni, Oren, Knoblock, Craig A., Tuchinda, Rattapoom, and Yates, Alexander 2003, ‘To buy or not to 
buy: mining airline fare data to minimize ticket purchase price’, Proceeding of the 9th ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining, Washington DC. 
 
Fan, Meng, and Wang, Ke 1998, ‘Optimal harvesting policy for single population with periodic 
coefficients’, Mathematical Biosciences, vol. 152, no. 2, pp. 165-177. 
 
Feng, Youyi, and Gallego, Guillermo 2000, ‘Perishable asset revenue management with markovian time 
dependent demand intensities’, Management Science, vol. 46, no. 7 (July), pp. 941-956. 
 
Feng, Youyi, and Xiao, Baichun 2000a, ‘Optimal policies of yield management with multiple 
predetermined prices’, Operations Research, vol. 48, no. 2 (March-April), pp. 332-343. 
 
Feng, Youyi, and Xiao, Baichun 2000b. ‘A continuous-time yield management model with multiple 
prices and reversible price changes’, Management Science, vol. 46, no. 5 (May), pp. 644-657. 
  
Feng, Youyi, and Xiao, Baichun 2001.  ‘A dynamic airline seat inventory control model and its optimal 
policy’, Operations Research, vol. 49, no. 6 (November-December), pp. 938-949. 
 
Gallego, Guillermo, and van Ryzin, Garrett 1994, ‘Optimal dynamic pricing of inventories with stochastic 
demand over finite horizons’, Management Science, vol. 40, no. 8 (August), pp. 999-1020. 
  
Garcia-Diaz, Alberto, and Kuyumcu, Ahmet 1997, ‘A cutting-plane procedure for maximizing revenues 
in yield management’, Computers and Industrial Engineering, vol. 33, no. 1-2, pp. 51-54. 
 
Kimes, Sheryl E. 1989, ‘Yield management:  a tool for capacity-constrained service firms’, Journal of 
Operations Management, vol. 8, no. 4 (October), pp. 348-363. 
 
Kuyumcu, A., and Garcia-Diaz, A. 2000, ‘A polyhedral graph theory approach to revenue management in 
the airline industry’, Computers & Industrial Engineering, vol. 38, no. 3, pp. 375-396. 
 
Ladany, S.P. 1996, ‘Optimal market segmentation of hotel rooms-the non-linear case’, International 
Journal of Management Science, vol. 24, no. 1, pp. 29-36. 
 
Lai, Kin-Keung, and Ng, Wan-Lung 2003, ‘A stochastic approach to hotel revenue optimization’, 
Computers & Operations Research, Article in Press. 
 
Li, Michael Z.F. 2001, ‘Pricing non-storable perishable goods by using a purchase restriction with an 
application to airline fare pricing’, European Journal of Operational Research, vol. 134, no. 3, pp. 631-
647. 
 
McAfee, R. Preston, ‘Coarse matching’, Econometrica, vol. 70, no. 5, pp. 2025-2034. 
 



 36

McGill, Jeffrey I., and Van Ryzin, Garrett J. 1999, ‘Revenue management:  research overview and 
prospects’, Transportation Science, vol. 33, no. 2 (May), pp. 233-256. 
 
Mussa, Michael and Rosen, Sherwin 1978, ‘Monopoly and product quality’, Journal of Economic Theory, 
vol. 18, pp. 301-317. 
 
Oren, Shmuel, Smith, Stephen, and Wilson, Robert 1985, ‘Capacity pricing’, Econometrica, vol. 53 
(May), pp. 545-566. 
 
Sawaki, K. 2003, ‘Optimal policies in continuous time inventory control models with limited supply’, 
Computers & Mathematics with Applications, vol. 46, no. 7, pp. 1139-1145. 
 
Sridharan, ‘Sri’ V. 1998, ‘Managing capacity in tightly constrained systems’, International Journal of 
Production Economics, vol. 56-57, pp. 601-610. 
 
Stokey, Nancy L. 1979, ‘Intertemporal price discrimination’, The Quarterly Journal of Economics, vol. 
93, no. 3 (August), pp. 355-371. 
 
Talluri, Kalyan T. and van Ryzin, Garrett J. 2004, The Theory and Practice of Revenue Management, 
Kluwer Academic Publishers, Dordrecht, Netherlands. 
 
Van Slyke, Richard, and Young, Yi 2000, ‘Finite horizon stochastic knapsacks with applications to yield 
management’, Operations Research, vol. 48, no. 1 (January-February), pp. 155-172. 
 
Williams, Loren 1999, ‘Revenue management:  microeconomics and business modeling’, Business 
Economics (April), pp. 39-45. 
 
Williamson, Oliver 1966, ‘Peak load pricing and optimal capacity under indivisibility constraints’, 
American Economic Review, vol. 56 (September), pp. 810-827. 
 
Wilson, Robert 1989, ‘Efficient and competitive rationing’, Econometrica, vol. 57 (January). 
 
Zhao, Wen, and Zheng, Yu-Sheng 2000, ‘Optimal dynamic pricing for perishable assets with 
nonhomogeneous demand’, Management Science, vol. 46, no. 3 (March), pp. 375-388. 
 



 37

Appendix 
 
Proof of Theorem 2: 
 
The evolution of the probability that there are exactly i unsold seats is governed by the probability of 
selling a seat when there are i+1 unsold, and the probability of selling a seat when there are i unsold, so 
that 
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This is used as the base of an induction to establish the theorem.  Suppose the theorem is true at n≤k.  
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The expected number of unsold items, k-n, satisfies 
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The proof for x=1 can be handled by observing that ∑
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For x>1, and large k, the term te-t inside the integral is decreasing in t and thus approximately equal to its 
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The last approximation invokes Stirling’s Formula, kkekkk −≈ π2!  
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For x<1, the proof is similar, applying Stirling’s formula and obtaining 
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Justification for some assertions in the text: 
 
If the price is constant at ca +1 , the probability of a sale given that a customer has 

arrived is ace −−1 .  Thus, let pi(t) be the probability of making at least i sales in the period [t, T].  p0(t)=1,  
and pi(T)=0 for i>0. 
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Thus, the probability that the flight sells out is  
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Proof of Lemma 3: 
First note that if capacity k is zero, then sales are zero, verifying the base of an induction.  Now suppose 
Lemma 3 is true for k-1.   
 

dsset k

T

t

ts
k ))(1()( 1

)(
−

−−∫ += ηµη µ  

 

 ds
j

sT
jkeke

k

j

j
sT

T

t

ts

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
−−−−+= ∑∫

−

=

−−−−
2

0

)()(

!
))((

)1(11
µµ µµ  

 

 ( ) ds
j

sT
jkeek

k

j

jT

t

tTtT

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
−−−−= ∑∫

−

=

−−−−
2

0

)()(

!
))((

)1(1
µµ µµ  

 

 ( ) ∑
−

=

+
−−−−

+
−

−−−−=
2

0

1
)()(

!1
))((

)1(1
k

j

j
tTtT

j
sT

jkeek
µµµ  

 

 ( ) ∑
−

=

−−−− −
−−−=

1

1

)()(

!
))((

)(1
k

j

j
tTtT

j
sT

jkeek
µµµ  

 

 ∑
−

=

−− −
−−=

1

0

)(

!
))((

)(
k

j

j
tT

j
sT

jkek
µµ     Q.E.D. 

 
Proof of Theorem 4:  Let x be a nonnegative random variable, and 
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Proof of Theorem 5:  Let x be a nonnegative random variable, and 
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Proof of Theorem 6: 
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We assume the standard condition that marginal revenue is decreasing, in which case there are sales of 
good 2 if and only if 
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