Game Plan

- Game theory review
- Review of some basics
- Questions before the final

Answering GT Questions

 Nash equilibria can be either pure or mixed strategy equilibria

Why do you need to make other person indifferent?

- Expected value to Odds of playing 2 fingers: 3/4 (1) + 1/4 (-1) = 1/2
- Expected value to Odds of playing 1 finger: 3/4 (-1) + 1/4 (1) = -1/2
- So Odds would always play 2 fingers
- But then, Evens would always want to play 2, and we know this isn't an equilibrium

Another way to think of it

 Examples taken from <u>Thinking</u> <u>Strategically</u> by Avinash K. Dixit and Barry J. Nalebuff

Tips for simultaneous move games

- If you find only one pure strategy equilibrium, there shouldn't be a mixed eq.
- If you find two pure strategy equilibria (like in Battle of the Sexes), look for a mixed one
- In a given square, ask if anyone could do better by moving if the other guy stays

Baseball Ballet

Baseball	3, 2	1, 1
Ballet	0, 0	2, 3

Comparison of Industry Types					
	Perfect Competition	Monopoly	Cournot Oligopoly		
# of Firms	Large	1	Small		
Price	Given	Function of q	Function of Q (industry total)		
How quantity is chosen	Choose q s.t. p = MC	Choose q s.t. MR = MC	Max profit, given what other firm(s) does (do)		
Profit function	pq - c(q)	b(d)d - c(d)	p(Q)q _i - c _i (q _i)		
Profit level	0 in long run	High	Between PC and monopoly		
Dead weight loss	None	Triangle from q_m to q_e , below p_m and above MR at q_m	$\begin{array}{l} \mbox{Triangle between} \\ Q_o \mbox{ and } Q_e \mbox{ and } p_o \\ \mbox{ and } p_e, \mbox{ plus} \\ \mbox{ production} \\ \mbox{ inefficiency} \end{array}$		

Cournot Example

- 2 firms, with marginal costs $MC_1 = 3$, $MC_2 = 2$
- p(Q) = 5 2Q (Q is total quantity)
- Want to find q₁ and q₂, total quantity, and price
- Steps:
 - Find FOC's for firms 1 and 2
 - Solve for q_1 in terms of q_2 and vice versa
 - Plug one quantity into the expression for the other

Cournot Example

- What is Deadweight Loss?
- Efficient solution occurs where price = lowest marginal cost
- Two components:
 - Lost gains from trade
 - Excess cost paid for quantity of goods made by higher cost producer

Remember!

Read questions carefully

woman Baseball M

3, 2

0, 0

m Baseball

a n Movie Movie

1, 1

2, 3

- Make sure you answer all parts of a question
- Show us your work, explain thought process

(Extra slides; not used in recitation) Sequential Battle of the Sexes

woman

Μ

man

М

2

В

mán

МВ

0 1

0 1

В

2

3

Monopoly problem (last year's final)

- Consider a monopolist with constant marginal cost facing linear demand. A unit tax of *t* is imposed on the monopolist. By how much does the price rise?
- Linear demand: q(p) = a bp
- Let marginal cost be "c"
- Without tax, profits are (p-c)*q(p)
 = (p-c)(a-bp)

Monopoly problem (last year's final)

 $\begin{aligned} \pi &= (p\text{-}c)(a\text{-}bp)\\ d\pi/dp &= a\text{-}2bp\text{+}cb = 0\\ 2bp &= a\text{+}cb\\ p &= 1/2 \ (c+a/b) \end{aligned}$

Tax is part of marginal cost, so imagine c = c + t. Then price rises by 1/2 t. Could also write out $\pi = (p-c-t)(a-bp)$ and solve as above.